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Biological context

Vascular endothelial growth factor (VEGF) is a ho-
modimeric member of the cystine-knot family of
growth factors (Muller et al., 1997) that functions
as an endothelial cell-specific mitogen and is a pri-
mary modulator of physiological angiogenesis (Fer-
rara, 2001). VEGF is also an important mediator of
pathological angiogenesis in a variety of disorders in-
cluding cancer, proliferative retinopathies, rheumatoid
arthritis, age-related macular degeneration, and psori-
asis (Folkman, 1995); antagonists of VEGF therefore
have therapeutic potential. Six different isoforms of
VEGF share a common N-terminal receptor-binding
domain of 115-residues/monomer. VEGF functions by
binding to and dimerizing its tyrosine kinase receptors,
KDR and Flt-1, using a pair of identical binding sites
localized at the poles of the dimeric receptor-binding
domain.

Three classes of disulfide-constrained peptides that
block binding of VEGF to its receptors were iden-
tified recently using phage-display methods (Fair-
brother et al., 1998). Characterizing the interaction be-
tween the peptide antagonists and the VEGF receptor-
binding domain could lead potentially to the design of
novel, small-molecule antagonists of VEGF. A crystal
structure of one of the peptide antagonists in complex
with VEGF8−109 revealed it to be a poor candidate for
epitope transfer to a small-molecule scaffold (Wies-
mann et al., 1998). Unfortunately, the highest-affinity
class of peptides has not proved amenable to crystal-
lographic analysis. As a first step in characterizing
the complex between VEGF and this class of phage-
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derived peptide antagonists by NMR, we report here
nearly complete assignments for VEGF11−109 in com-
plex with peptide v107. Comparison with backbone
assignments reported previously for free VEGF11−109
(Fairbrother et al., 1997) allows for identification of
the peptide-binding site via quantitative chemical shift
mapping.

Methods and experiments

The receptor-binding domain of human VEGF
(VEGF11−109) was overexpressed in Escherichia coli
as a His-tagged protein, purified, refolded and cleaved
specifically as described previously (Fairbrother et al.,
1997). Samples of the VEGF/v107 complex for
NMR studies contained 1.0 mM 13C/15N-labeled
VEGF11−109 dimer and 2.25 mM synthetic v107 in
0.5 ml of 50 mM NaCl, 20 mM NaH2PO4 (pH 7.0),
0.002% sodium azide, and either 90% H2O/10% D2O
or 100% D2O, as appropriate.

Spectra were acquired at 45 ◦C on either a Bruker
DRX-600 or DRX-800 spectrometer equipped with
5-mm inverse triple-resonance probes with three-axis
gradient coils. Backbone 1HN , 13C, and 15N reso-
nances were assigned sequentially using the following
experiments (Cavanagh et al., 1995): 2D 15N-HSQC,
and 13C-HSQC, and 3D HNCO, (HCA)CONH,
HNCA, and CBCA(CO)NH. The backbone resonance
assignments were verified by observation of sequential
correlations in a 3D 15N-edited NOESY-HSQC spec-
trum (mixing time, 80 ms). Aliphatic side-chain reso-
nance assignments were obtained from analysis of 3D
HBHA(CO)NH, HCC(CO)NH, and HCCH-TOCSY
spectra. Aromatic resonance assignments were ob-
tained from a 3D 13C-edited NOESY-HSQC spectrum



190

Figure 1. (a) Plot of weighted net change in VEGF11−109 chemical
shifts for 1HN, 13C′, and 15N resonances of free and v107-bound
protein. (b) Mapping of the quantitative chemical shift perturba-
tions on the crystal structure of VEGF. Red colors indicate greater
chemical shift perturbations.

(mixing time, 110 ms) centered in the aromatic region.
Assignments for the Asn and Gln side-chain amide
groups were determined from the 15N-edited NOESY-
HSQC spectrum. Stereospecific assignments of β-
methylenes were determined by analysis of HNHB,
13C-edited NOESY-HSQC, and 15N-edited NOESY-
HSQC spectra. Spectra were processed using FE-
LIX (Accelrys, Inc.) and analyzed using FELIX and
XEASY (Bartels et al., 1995).

Extent of assignments and data deposition

Backbone assignments for VEGF11−109 in complex
with v107 are essentially complete, except for 15N
of all 7 prolines, 15N, 1HN , and 13C′ of the two
N-terminal residues, H11 and H12, and 15N, and
1HN of E13 and N62. All expected intraresidue
and sequential 13Cα and 13C′ correlations were ob-
served (where expectation is based on the observed
amide resonances). The side-chain assignments are
also complete except for 1Hδ2/13Cδ2 and 1Hε1/13Cε1

of histidines and 1Hε/15Nε of arginines. Stereospe-
cific assignments were established for 17 of 52 β-
methylenes having nondegenerate proton resonances.
The 1H, 13C, and 15N resonance assignments have

been deposited in the BioMagResBank (BMRB;
http://www.bmrb.wisc.edu) under accession number
5185.

Broadening of the backbone amide resonances of
N62 in the VEGF/v107 complex is consistent with
similar broadening observed for C61, N62, E64, and
G65 in spectra of free VEGF11−109 (Fairbrother et al.,
1997), and suggests conformational averaging in this
region. Note that new high-field data have lead to
revision of some tentative assignments reported for
free VEGF11−109; the revised backbone assignments
have been deposited also in the BMRB under ac-
cession number 5186. V107-induced chemical shift
perturbations of VEGF11−109 were assessed quan-
titatively; the weighted net change in VEGF11−109
chemical shifts for backbone 1HN , 13C′, and 15N
resonances (Meininger et al., 2000) of free and v107-
bound VEGF11−109 are plotted in Figure 1a. The
chemical shift perturbations are localized to the pole
regions of the VEGF dimer (Figure 1b), correspond-
ing closely to the previously determined binding sites
for the VEGF receptors KDR and Flt-1 (Muller et al.,
1997; Wiesmann et al., 1997).
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